

EEMBC Symmetric-Multicore Benchmark User Guide

Version 2.1.1

Contact: peter.torelli@eembc.org

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 2

Table of Contents

1	 Introduction 3	
2	 Theory of Operation 4	

2.1	 Performance Metrics 5	
2.1.1	 Throughput 5	
2.1.2	 Performance Scaling 5	

3	 Installing and Running 6	
4	 Benchmark Technical Overview 7	

4.1	 Certification Marks for MultiBench 7	
4.1.1	 MultiMark 7	
4.1.2	 ParallelMark 7	
4.1.3	 MixMark 8	

4.2	 Certification Marks for FPMark 9	
4.2.1	 FPMark Benchmark Kernels 9	
4.2.2	 FPMark Workloads 9	

4.3	 Certification Marks for AutoBench 10	
4.3.1	 AutoBench Benchmark Kernels 10	
4.3.2	 AutoBench Workloads 11	

4.4	 Certification Marks for CoreMark-Pro 12	
5	 Results Area 13	
6	 Comparing Mark Results 14	
7	 Verification 15	
8	 Basic Makefile Options 15	
Appendix A	 System Compatibility 16	
Appendix B	 Porting 17	
Appendix C	 Errata 18	
Appendix D	 MultiBench Expansion Pack 19	
Appendix E	 Document Revision History 20	

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 3

1 Introduction

MultiBench™ is a comprehensive suite of benchmarks for evaluating the performance of scalable
symmetric multiprocessor architectures employed within embedded multicore platforms. MultiBench
allows you to test:

• Scalability where contexts can exceed available resources
• Single core versus multiprocessor/multicore
• Memory bandwidth
• OS scheduling support
• Compiler benchmarking

The key element of MultiBench is the unique Multi-Instance Test Harness (MITH) that provides both a
framework for coordinating scalability analysis, as well as an abstraction layer to facilitate porting to
different platforms.

MultiBench is comprised of a wide-variety of application-focused workloads from several industries such
as automotive, networking and office automation. These workloads can also be used for general-purpose
analysis.

While MultiBench is the name given to the original scalability benchmark, EEMBC also provides other
products built on the same framework for: floating-point scalability, called FPMark™; automotive-centric
analysis, called AutoBench™ 2.0; and CoreMark®-Pro, the successor to the popular CoreMark®
benchmark which encompasses workloads most representative of consumer-centric experiences.

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 4

2 Theory of Operation

As a starting point in this benchmark development, EEMBC members provided the real-world, industry
code kernels such as angle-to-time computation, finite impulse response filtering, IP packet checking,
image rotation, and video encoding. MITH provides a convenient method to analyze compute scalability
through a platform framework that can link together these individual kernels into workloads with varying
degrees of complexity. In turn, the benchmark’s workloads represent common occurrences of these kernels
from real-world applications. For example, a simple workload may contain a single kernel such as
ippktcheck-4Mw1. On the other hand, a complex workload may contain 5 kernels, such as 4M-check-
reassembly-tcp-cmykw2-rotatew2.

For portability, MITH provides an abstraction layer of interface functions for porting the test harness to
most any hardware (homogeneous multicore or single core).

1. One context and one worker per context, XCMD='-c1 -w1':

2. One context and four workers per context, XCMD='-c1 -w4':

3. Four contexts and one worker per context, XCMD='-c4 -w1':

4. Two contexts and two workers per context, XCMD='-c2 -w2':

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 5

2.1 Performance Metrics

All MITH benchmark suites utilize two performance metrics for comparing configurations and platforms:

2.1.1 Throughput

Defined in iterations per second, each platform executes a workload a specific number of times per second.
The user adjusts the number of contexts to find the optimal throughput for each workload for the given
hardware.

2.1.2 Performance Scaling

This unit-less value defines how well performance scales with more computing resources assigned to the
workloads. This is done by comparing a workload running with a single worker to that same workload
with multiple workers. The user adjusts the number of workers to find the optimal scaling for each
workload.

The MultiBench and FPMark suites combine the throughput of each workload into a single score (a
Mark) which is reported in the output file . By default, the suite runs all of the workloads once using a
single resource, and then again with the user-defined best configuration. The performance scaling of a
platform is reported as the ratio of the Marks for these two runs. More information on this mark is given
in the Certification Marks for MultiBench section.

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 6

3 Installing and Running

Each suite is named by the following convention suite_x.x.x.tgz, where suite can be multibench,
fpmark, coremarkpro, or autobench.

1. Unpack the suite archive. It will create a new folder with the following contents:

Makefile
Makefile.mak
benchmarks/ ; Benchmark kernels
docs/ ; Release information
mith/ ; MITH framework
util/ ; Support tools
workloads/ ; Workloads & workload datasheets

2. Build the suite. Currently the build system supports the Linux gcc 32- and 64-bit environments.
While there are many toolchains in the util/make area, not all are up-to-date and are provided as
a reference. This build step creates all of the executables and runs them once to verify the
workload runs against reference data.

% make TARGET=<target>

3. Build and run the certification to obtain official EEMBC results for all the workloads:

% make TARGET=<target> certify-all

See the “Benchmark Technical Overview” section for details of what occurs in this step.

After the last step completes, the results are stored under the build path:

builds/<target>/<toolchain>/

The workloads’ executables are stored under the build path in the bin area:

bin/<workload>.exe

Note that some workloads request input data in a hardcoded path (../data) so they can only be run from
within the bin directory.

Some workloads require input data files for verification. For example, the FPMark workloads that contain
floating-point functions use a set of golden results in order to compare SNR accuracy of the target
systems’ FP fidelity. The same is true for the video codec libraries found in MultiBench. The comparison
data can be found under:

bin/data*/

Each official run creates a time-stamped directory containing a log file with all results. FPMark and
MultiBench create a “Mark” score, which will be located in the same path as the log file, but with the
suffix mark:

cert/<date>/<target>.<toolchain>.log ; results log
cert/<date>/<target>.<toolchain>.mark ; summary & mark

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 7

4 Benchmark Technical Overview

4.1 Certification Marks for MultiBench

MultiBench consists of three separate marks: MultiMark, ParallelMark, and MixMark. Each of these
marks are comprised of approximately two dozen workloads. The MultiBench Expansion Pack contains an
additional 96 workloads that are not associated with any mark, but provide additional analysis
capabilities. The workloads in the MultiBench Expansion Pack are executed automatically when the user
runs the certification run.

4.1.1 MultiMark

MultiMark consolidates the best throughput using workloads with only one work item, each of which uses
only one worker. The calculated throughput factor is 10 times the geometric mean of the iterations per
second achieved with the best configuration for each workload (Note: 10 is a multiplication factor). Each
work item uses only one worker, -w1, and multiple copies of the task can be performed in parallel to take
advantage of concurrent hardware resources, -cN. All workloads in this mark use a 4MB dataset.

Figure 1. MultiMark workloads and concurrency constraints for official run (certification). Only the number of
contexts (-c) may be changed.

To measure scaling with MultiMark, specify the number of contexts, N:

% make TARGET=<target> certify-all XCMD='-cN'

The scoring equation is:

MultiMark = 10 x geomean(geomean(rotate1, rotate64), remaining scores)

4.1.2 ParallelMark

This mark consolidates the best throughput of workloads with only one work item that each use multiple
workers. The calculated throughput factor is 10 times the geometric mean of the iterations per second
achieved with the best configuration for each workload (Note: 10 is a multiplication factor). Only one
work item may be executed at a time, and multiple workers may be used to take advantage of concurrent
hardware resources, -wN. All workloads in this mark use a 4MB dataset.

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 8

Figure 2. ParallelMark workloads and concurrency constraints for official run (certification). Only the number of
workers (-w) may be changed.

To measure scaling with ParallelMark, specify the number of workers, N:

% make TARGET=<target> certify-all XCMD='-wN'

The scoring equation is:

ParallelMark = 10 x geomean(geomean(rotate1, rotate64), remaining scores)

4.1.3 MixMark

MixMark is perhaps the most telling mark, it consolidates the best throughput of workloads with multiple
different work items. These workloads are closest to workloads run on actual systems. The calculated
throughput factor is 10 times the geometric mean of the iterations per second achieved with the best
configuration for each workload (Note: 10 is a multiplication factor). All workloads in this mark use a
4MB dataset.

The number of simultaneous work items, -cM, and the number of workers per work item, -wN, may be
modified for this mark.

Figure 3. MixMark workloads and concurrency constraints for official run (certification). Both the number of
contexts (-c) and number of workers (-w) may be changed.

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 9

To measure scaling with ParallelMark, specify the number of workers, N, and contexts, M:

% make TARGET=<target> certify-all XCMD='-wN –cM'

The scoring equation is:

MultiMark = 10 x geomean(all scores)

4.2 Certification Marks for FPMark

FPMark consists of 8 scoring marks comprised of 55 workloads built from 10 benchmark kernels. Each
mark represents the geometric mean of a subset of workloads’ performance. The performance, or
throughput, of each workload is measured in iterations per second.

4.2.1 FPMark Benchmark Kernels

The following table describes the ten benchmark kernels that form the foundation of the suite. More
details can be found in the datasheet.txt file located in the benchmark’s source directory benchmarks/fp.

Figure 4. FPMark suite benchmark kernels.

4.2.2 FPMark Workloads

The ten kernels are assembled into 53 workloads. These workloads are grouped together into high-level
and low-level marks. Low-level marks are grouped according to precision (double or single) and dataset
size (small, medium, and large). The following table describes the six low-level marks created and their
corresponding workloads.

Benchmark Description
atan	 Calculate	atan(x)	using	a	telescoping	series.
blacks	 Black-Scholes	simulation.
FC_xp1px	 Calculates	the	first	n 	fourier	coefficients	of	the	function	(x+1)^x.
fft_radix2	 FFT	transform	using	radix-2	for	dataset	sizes	of	powers	of	2.
horner	 Polynomial	evaluation	using	Horner	method.
linpack	 Gaussian	elimination	with	partial	pivoting	based	on	LINPACK.
loops	 A	variety	of	kernels	based	on	the	Livermore	loops	benchmark.
lu	 Matrix	LU	decomposition	and	dot	product.
nnet	 Neural	net	simulation.
ray	 Simple	ray	tracing	on	a	sphere.

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 10

Figure 5. FPMark Double-Precision Mark workload table. Note, there is no large dataset for the nnet kernel.

Figure 6. FPMark Single-Precision Mark workload table. Note, there is no large dataset for the nnet kernel, and
radix, raytracing, and xp1px do not have a Single-Precision mode.

The two high-level marks, FPMark and MicroMark, represent the official EEMBC-endorsed scores for the
suite.

FPMark is the official EEMBC-endorsed mark for the FPMark suite. It is calculated as the geometric
mean of all of the workloads and multiplying by 100. Any device that cannot yield all of the individual
scores (e.g., insufficient memory or computation resource) will be unable to obtain an FPMark.

MicroMark is the official mark for low-end microcontrollers with limited resources. It is calculated as the
geometric mean of the small-dataset, single-precision workloads.

4.3 Certification Marks for AutoBench

There are no official Marks for AutoBench. For simple evaluation, the user is encouraged to create a Mark
utilizing similar methods applied for MultiBench or FPMark. Otherwise AutoBench can be used as a tool
for evaluating the scalability of each of its workloads.

4.3.1 AutoBench Benchmark Kernels

The individual benchmark kernels used to derive the workloads are explained in the document found here:
http://eembc.org/techlit/datasheets/autobench_db.pdf.

FPv1.0	DP	Small	Dataset FPv1.1	DP	Medium	Dataset FPv1.3	DP	Large	Dataset
atan-1k atan-64k atan-1M
blacks-sml-n500v20 blacks-mid-n1000v40 blacks-big-n5000v200
horner-sml-1k horner-mid-10k horner-big-100k
inner-product-sml-1k inner-product-mid-10k inner-product-big-100k
linear_alg-sml-50x50 linear_alg-mid-100x100 linear_alg-big-1000x1000
loops-all-tiny loops-all-mid-10k loops-all-big-100k
lu-sml-20x2_50 lu-mid-200x2_50 lu-big-2000x2_50
nnet_data1 nnet_test
radix2-sml-2k radix2-mid-8k radix2-big-64k
ray-64x48at4s ray-320x240at8s ray-1024x768at24s
xp1px-sml-c100n20 xp1px-mid-c1000n200 xp1px-big-c10000n2000

FPv1.4	SP	Small	Dataset FPv1.5	SP	Medium	Dataset FPv1.6	SP	Large	Dataset
atan-1k-sp atan-64k-sp atan-1M-sp
blacks-sml-n500v20-sp blacks-mid-n1000v40-sp blacks-big-n5000v200-sp
horner-sml-1k-sp horner-mid-10k-sp horner-big-100k-sp
inner-product-sml-1k-sp inner-product-mid-10k-sp inner-product-big-100k-sp
linear_alg-sml-50x50-sp linear_alg-mid-100x100-sp linear_alg-big-1000x1000-sp
loops-all-tiny-sp loops-all-mid-10k-sp loops-all-big-100k-sp
lu-sml-20x2_50-sp lu-mid-200x2_50-sp lu-big-2000x2_50-sp
nnet-data1-sp nnet_test-sp

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 11

Figure 7. AutoBench 2.0 benchmark kernels

4.3.2 AutoBench Workloads

All of the workloads in this suite contain a between two and four kernels that execute sequentially, for
example: in matrix-tblook the matrix kernel runs followed by the table lookup kernel. The workloads are
provided with two dataset sizes, 4K and 4M:

Figure 8. AutoBench 2.0 workloads are combinations of the AutoBench 2.0 kernels with 4kB and 4MB data-sets.

Kernel Description
a2time01 Angle	to	time	conversion
aifirf01 Finite	impulse	response	filter
bitmnp01 Bit	manipulation
canrdr01 CAN	remote	data	request
idctrn01 Inverse	discrete	cosine	transform
iirflt01 Infinite	impulse	response	filter
matrix01 Matrix	arithmetic
pntrch01 Pointer	chasing
puwmod01 Pulse	width	modulation
rspeed01 Road	speed	calculation
tblook01 Table	lookup	and	interpolation
ttsprk01 Tooth	to	spark

Workload
bitmnp-rspeed-puwmod-4K[-4M]
matrix-tblook-4K[-4M]
puwmod-rspeed-4K[-4M]
rspeed-idctrn-canrdr-4K[-4M]
rspeed-idctrn-iirflt-4K[-4M]
ttsprk-a2time-matrix-4K[-4M]
ttsprk-a2time-pntrch-4K[-4M]
ttsprk-a2time-pntrch-aifirf-4K[-4M]
ttsprk-a2time-pntrch-idctrn-4K[-4M]
ttsprk-a2time-pntrch-tblook-4K[-4M]

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 12

4.4 Certification Marks for CoreMark-Pro

CoreMark-Pro uses a combination of integer and floating-point kernels with a variety of data sizes, as well
as the CoreMark benchmark. The number of workers cannot be adjusted for the benchmark, only the
number of contexts using –cN.

Figure 9. CoreMark-Pro workloads.

Unlike the other benchmarks, the score for CoreMark-Pro is a geometric mean of normalized component
scores based on an initial reference platform. The score is automatically computed by the same PERL
script referenced earlier, but for clarity, the table below lists the scale factor and reference score
(denominator). To compute the mark, divide each measured component score by its reference score,
multiply by the scale factor, and take the geometric mean of those numbers, the multiply by 100.

Figure 10. Scale factor and reference scores used to compute the CoreMark-Pro mark.

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 13

5 Results Area

After the certification run completes, the results from each pass reside in the build area cert directory:

builds/<TARGET>/<TOOLCHAIN>/cert/<TIMESTAMP>/
 <TARGET>.<TOOLCHAIN>.log
 best/<TARGET>.<TOOLCHAIN>.log
 single/<TARGET>.<TOOLCHAIN>.log

Each pass consists of a single verification run, -v1, followed by 3 performance runs, -v0. The top-level log
is the concatenation of the best and single logs, which in turn are concatenations of each individual
executable run. Each line in the aggregate log files contains the results of one invocation of the
executable, which is just the transpose of this workload’s standard output. Here is an example of running
a single workload directly (not using make):

% cd builds/<TARGET>/<TOOLCHAIN>/bin
% ./iDCT-4M.exe -v0 -c4 -w1
- Info: Starting Run...
-- Workload:iDCT-4M=1511685754
-- iDCT-4M:time(ns)=600
-- iDCT-4M:contexts=4
-- iDCT-4M:workers=1
-- iDCT-4M:iterations=100
-- iDCT-4M:time(secs)= 0.6
-- iDCT-4M:secs/workload= 0.006
-- iDCT-4M:workloads/sec= 166.667
-- Done:iDCT-4M=1511685754

The first option turns off verification mode, the next sets the number of contexts and workers.

Figure 11. Example results for an 8-core machine running the iDCT-4M workload.

These same results could have been obtained by passing XCMD=’-c4 -w4’ to the make command. Make
would run the single context reference run and then write the results to the path named single, and then
would have run the same test but using the supplied XCMD flags, and written those results under best.

Throughput Scaling

1 2 4 8 1 2 4 8
1 56 57 167 225 1 1.0 1.0 3.0 4.0
2 94 190 209 211 2 1.7 3.4 3.8 3.8
4 169 196 213 208 4 3.0 3.5 3.8 3.7
8 181 201 198 189 8 3.3 3.6 3.5 3.4

of Contexts (-c)

Wo
rk
er
s

(-
w)

Wo
rk
er
s

(-
w)

of Contexts (-c)

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 14

The aggregate log-files contain a large amount of data and suited more toward spreadsheet analysis. To
view a higher-level summary of an aggregate log file, use the provided util/perl/generate_summary.pl
script like this:

% perl util/perl/generate_summary.pl builds/linux64/gcc64/cert/<date>/*.log
 MultiCore SingleCore
Workload Name (iter/s) (iter/s) Scaling
-- ---------- ---------- ----------
4M-check 1733.70 3012.05 0.58
4M-check-reassembly 588.24 354.61 1.66
4M-check-reassembly-tcp 219.30 118.48 1.85
4M-check-reassembly-tcp-cmykw2-rotatew2 74.72 43.80 1.71
4M-check-reassembly-tcp-x264w2 7.70 2.31 3.33
4M-cmykw2 904.98 261.44 3.46
4M-cmykw2-rotatew2 118.11 69.28 1.70
4M-reassembly 1408.45 404.86 3.48
4M-rotatew2 142.45 94.70 1.50
:
:

In this example, the settings used for the best run were different than that of single, and thus the
resulting scaling is greater than one, as expected, since this example was run on an 8-core machine with
XCMD='-w2 -c2'. Note the poor scaling of 4M-check (0.58x). If we run it by itself with only -c2 we see a
score of ~5924, or scaling of 1.96x. This is one example of how simply increasing the number of workers
and contexts doesn’t necessarily achieve the best performance, and that the user must experiment to see
which combination yields the best results.

6 Comparing Mark Results

For suites that generate a mark score, the results are automatically computed and reported in the mark
file.

Consider the following MultiBench mark file:

% cd builds/<TARGET>/<TOOLCHAIN>/cert/* area>
% cat <TARGET>.<TOOLCHAIN>.mark
:
:
MARK RESULTS TABLE

Mark Name MultiCore SingleCore Scaling
--- ---------- ---------- ----------
MultiBench, 1. MultiMark 4023.32 1200.53 3.35
MultiBench, 2. ParallelMark 4092.06 1200.29 3.41
MultiBench, 3. MixMark 2687.99 916.62 2.93

These sample marks were collected on a four-core system with the number of contexts set to four. The
mark scores are displayed for both the single-core (default) and multi-core runs (in this case, XCMD='-
c4'). We can see that the scaling approaches the theoretical max of 4.00 for Multi- and ParallelMark, but
is 25% lower for MixMark.

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 15

7 Verification

All workloads either create random data of a specific size or use a pre-determined dataset. In both cases,
the output is verified against the input and tests can fail if the results don’t match. In the case of floating-
point tests, MITH compares the results using a signal-to-noise ratio threshold to account for real-world
hardware implementation differences.

8 Basic Makefile Options

All MultiBench suites exposes several parameters from the Makefile command-line through the
XCMD='<flags>' parameter.

1. The number of contexts can be changed with this flag:

Context flag: -cN

2. The number of workers, N, can be changed with this flag:

Number of Concurrent Workers flag: -wM

3. The number of iterations for all workloads can be changed with this flag. By default, each
workload has its own number of iterations, originally decided by the EEMBC workgroup that
developed the benchmark specification. The log file reports the default number of iterations for
each workload.

Iteration flag: -iN

4. A value of 0 indicates performance mode, a value of 1 indicates verification mode, which invokes
result checking.

Verification flag: -v[0|1]

Other make targets exist, but they are all partial targets of the primary rule certify-all, but for the sake of
simplicity, it is easier to simply invoke target certify-all for each experiment.

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 16

Appendix A System Compatibility

The following platforms, hardware, and toolchains were tested:

MultiBench requires at least 1GB of RAM; the MultiBench Expansion Pack requires a minimum of 8GB.

Target OS Name OS Version Toolchain Compiler Version CPU CPU ID GHz

logical
cores Container OK?

linux Ubuntu 14.04.3 LTS gcc 4.8.4-2ubuntu1 Intel Xeon E5-2650 2.0 1 AWS/i-097594d1 ü
linux64 RHEL 6.7 Santiago gcc64 4.4.7 2012013 Intel Xeon E5-2670 v2 2.5 2 AWS/i-51588689 ü
linux64 Ubuntu 14.04.2 LTS gcc64 4.8.4-2ubuntu1 Intel Xeon E5-2676 2.4 1 AWS/i-5a9fd99f ü
linux64 Ubuntu 14.04.3 LTS gcc64 4.8.4-2ubuntu1 Intel Xeon E5-2676 v3 2.4 8 AWS/i-bf5bc265 ü
linux64 Ubuntu 14.04 LTS gcc64 4.8.2-19ubuntu1 ARM ThunderX (?) 2.5 96 none ü
linux64 Ubuntu 14.04.1 LTS gcc64 4.8.2-19ubuntu1 Intel Core i7-4750HQ 2.0 VMW/OSX ü
linux64 CYGWIN_NT-6.1-WOW 2.0.4(0.287/5/3) gcc64 4.9.2 Intel Core i7-4750HQ 2.0 VMW/OSX ü
linux64 CYGWIN_NT-10.0 2.4.1(0.293/5/3) gcc64 4.9.3 Intel Core i7-6500U 2.5 4 WIN10 û
linux64 CentOS 5.11 (Final) gcc64 4.1.2 20080704 Intel Xeon E5-2676 v3 2.4 1 AWS/i-9d27025a ü
linux64 Scientific Linux 6.4 Carbon gcc64 4.4.7 20120313 Intel Xeon E5-2670 v2 2.5 1 AWS/i-6d523ab5 ü

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 17

Appendix B Porting

To simplify porting and portability, MITH was written for Linux-based operating systems using GNU-like
tool chains. However, it was implemented with an abstraction layer and test harness to facilitate porting
to different platforms.

The abstraction layer provides a method to implement thread scheduling, signaling, and affinity. By
default, the threading is implemented with POSIX pthread, and affinity is deferred to the O/S. The
following 12 functions located in the file mith/al/src/al_smp.c implement the default MITH threading
model:

al_mutex_init
al_mutex_lock
al_mutex_trylock
al_mutex_unlock
al_mutex_destroy
al_cond_init
al_cond_signal
al_cond_broadcast
al_cond_wait
al_cond_destroy
al_thread_create
al_join

The abstraction layer also contains hooks for implementing processor affinity. Since affinity
implementations may vary significantly across hardware and development tools, the effort is largely left to
the developer. Please contact EEMBC for paid-support on implementing affinity.

MITH uses a test harness which essentially implements some common standard-library functions and
console output. Test harness functions begin with th_. For example, the th_printf function calls the
standard library printf for console output and on systems without a console, the user may need to
implement th_printf as a character output to a UART or any other debug port. The test harness
functions are located in mith/src/th_lib.c.

In addition to changes to the abstraction layer and test harness, the toolchain may also need modification.
The most common toolchain is gcc64, and the make file defining it is located in util/make/gcc64.mak.
The Intel® C++ Compiler (icc) is also supported through TOOLCHAIN=icc. Porting to compilers that
support similar switches, e.g., ARM-based cross compilers, is fairly straightforward. For non-GCC
compilers this may be a significant effort.

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 18

Appendix C Errata

Known Warnings

EEMBC mandates the use of aggressive warning reporting using the -Wall switch. While significant effort
has been spent to reduce the number of compiler warnings, different versions of compilers produce more
pedantic warnings than others. EEMBC has tested a number of GCC compilers and not all of the
warnings can be dismissed without extensive code modifications. Some of the more pervasive warnings
different GCC compiler versions may encounter are listed below, and may be safely ignored.

GCC 4.1.2

benchmarks/networking/tcp/tcp_core.c:440: warning: comparison is always true due to
limited range of data type
benchmarks/video/x264/encoder/analyse.c:29: warning: ignoring #pragma GCC diagnostic
benchmarks/video/x264/encoder/cabac.c:714: warning: ignoring #pragma GCC diagnostic
benchmarks/video/x264/encoder/cabac.c:715: warning: ignoring #pragma GCC diagnostic
benchmarks/video/x264/encoder/cabac.c:807: warning: ignoring #pragma GCC diagnostic
benchmarks/md5/md5test.c:212: warning: dereferencing type-punned pointer will break
strict-aliasing rules

GCC 4.4.7

benchmarks/video/x264/common/macroblock_common.c:955: warning: array subscript is
below array bounds
benchmarks/video/x264/common/macroblock_common.c:956: warning: array subscript is
below array bounds
benchmarks/video/x264/encoder/cabac.c:714: warning: expected [error|warning|ignored]
after ‘#pragma GCC diagnostic’
benchmarks/video/x264/encoder/cabac.c:807: warning: expected [error|warning|ignored]
after ‘#pragma GCC diagnostic’

Bug Fixes

MultiBench 1.1 fixes a bug from the original 1.0 release. In the x264 encoding algorithm macroblock.c, the
function x264_mb_encode_8x8_chroma contains a bug. Currently none of the suites execute this code,
but it may change in the future and the following correction has been implemented.

Bug #MB001: x264 8x8 Megablock Chroma Encoding Coefficients Incorrect

- for(i = 0; i < 4; i++)
- dct4x4[i][0][0] = dct2x2[0][i];

+ for(i=0; i<2; ++i) {
+ for(j=0; j<2; ++j) {
+ dct4x4[ci][0][0] = dct2x2[i][j];
+ ++ci;
+ }
+ }

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 19

Appendix D MultiBench Expansion Pack

The MultiBench Expansion Pack adds 96 additional workloads of varying dataset size and workload
complexity (not included with FPMark or AutoBench). To install the expansion pack, switch to the
directory containing the MultiBench original installation, and unpack the archive there. This will add new
benchmarks and workloads to the current work area. The following is the list of workloads:

64M-check-reassembly md5-32M rotate-16x4Ms64
64M-check-reassembly-tcp md5-32M16worker rotate-16x4Ms64w1
64M-cmykw2 md5-32M1worker rotate-34k-180deg
64M-cmykw2-rotatew2 md5-32M2worker rotate-34k-270deg
64M-rotatew2 md5-32M4worker rotate-34k-90deg
64M-tcp-mixed mp2decode1 rotate-34kX128w1
64M-x264-1worker mp2decode2 rotate-34kX16-90deg
64M-x264-2workers mpeg2-90Mout-1worker rotate-34kX512-90deg
64M-x264-4workers mpeg2-90Mout-2workers rotate-4M-180deg
64M-x264-8workers mpeg2-90Mout-4workers rotate-4M-270deg
huffde-all mpeg2-90Mout-8workers rotate-4M-90deg
ippktcheck-64M mpeg2-base rotate-4Ms32
ippktcheck-64M-1Worker rgbcmyk-12M2workers rotate-4Ms32w1
ippktcheck-64M-2Worker rgbcmyk-5x12M rotate-4Ms4
ippktcheck-8x4M-1Worker rgbcmyk-5x12M1workers rotate-4Ms4w1
ippktcheck-8x4M-4Worker rgbcmyk-5x12M2workers rotate-520k-180deg
ipres-100M10worker rgbcmyk-5x12M4workers rotate-520k-270deg
ipres-100M1worker rgbcmyk-5x12M8workers rotate-520k-90deg
ipres-100M2worker rotate-16x4Ms1 rotate-520kX16-90deg
ipres-100M4worker rotate-16x4Ms1w1 rotate-color1Mp
ipres-6M1worker rotate-16x4Ms1w2 rotate-color1Mpw1
ipres-6M4worker rotate-16x4Ms1w32 rotate-color-4M-90deg
ipres-72M rotate-16x4Ms1w4 rotate-color-4M-90degw1
ipres-72M1worker rotate-16x4Ms1w8 tcpbase
ipres-72M2worker rotate-16x4Ms32 x264-4M
md5-128M16worker rotate-16x4Ms32w1 x264-4Mw1
md5-128M1worker rotate-16x4Ms32w2 x264-64M
md5-128M2worker rotate-16x4Ms32w4 x264-90M-1worker
md5-128M4worker rotate-16x4Ms32w8 x264-90M-2workers
md5-1M16worker rotate-16x4Ms4w1 x264-90M-4workers
md5-1M1worker rotate-16x4Ms4w2 x264-base
md5-1M2worker rotate-16x4Ms4w4
md5-1M4worker rotate-16x4Ms4w8

EEMBC Symmetric-Multicore Benchmark User Guide

Copyright © 2011-2018 Embedded Microprocessor Benchmark Consortium 20

Appendix E Document Revision History

Version Date Notes

2.1.1 24-08-2018 Merged in CoreMark-Pro slides; new template; added revision history;
renamed from “MultiBench User’s Guide”.

